मेरे पास एक df है,

date1        date2
2019-05-31   2019-06-01
NaT          NaN
2018-07-01   2018-08-01
NaT          2019-06-03
2019-01-01   NaN

मैं -3 <= date2 - date1 <= 0 के आधार पर एक बूलियन कॉलम on_time बनाना चाहता हूं, यदि date1 या date2 में कोई मान NaN या NaT है, तो on_time = False;

    a = df['date1'].isna()
    b = df['date2'].isna()

    df['on_time'] = (a | b)

    m = (-3 <= (df.loc[~a&~b, 'date1'] - df.loc[~a&~b, 'date2']).dt.days) & \
        ((df.loc[~a&~b, 'date1'] - df.loc[~a&~b, 'date2']).dt.days <= 0)

    df['on_time'] = m

मैं सोच रहा हूं कि ऐसा करने का कोई बेहतर तरीका है, अधिक संक्षिप्त और कुशल तरीका।

1
daiyue 27 जून 2019, 14:40

2 जवाब

सबसे बढ़िया उत्तर
## if the dates are of type str
df['date1'] = pd.to_datetime(df['date1'])
df['date2'] = pd.to_datetime(df['date2'])


(df['date2'] - df['date1']).apply(lambda x: True if -3<= x.days <=0   else False)

आउटपुट

       date1      date2  on_time
0 2019-05-31 2019-06-01    False
1        NaT        NaT    False
2 2018-07-01 2018-08-01    False
3        NaT 2019-06-03    False
4 2019-01-01        NaT    False
1
iamklaus 27 जून 2019, 14:50

IIUC, आप series.dt.days() और s.ge() और le:

s=(df.date2-df.date1).dt.days
df=df.assign(on_time=s.ge(-3)&s.le(0))

       date1      date2  on_time
0 2019-05-31 2019-06-01    False
1        NaT        NaT    False
2 2018-07-01 2018-08-01    False
3        NaT 2019-06-03    False
4 2019-01-01        NaT    False
3
anky 27 जून 2019, 14:55