दो दृश्य मैट्रिसेस X और Y को देखते हुए, CCA को X's और Y's वैक्टर में तत्वों के n_components रैखिक संयोजनों को सबसे बड़े सहसंबंध के साथ वापस करना चाहिए, अर्थात पहले घटक का सबसे बड़ा सहसंबंध होता है, दूसरे का दूसरा सबसे बड़ा सहसंबंध उस दिशा में होता है जो पहले वाले से असंबंधित होता है, आदि। हालांकि, निम्नलिखित कोड में, दूसरा कॉलम स्पष्ट रूप से कम सहसंबद्ध है तीसरे कॉलम की तुलना में:

from sklearn.cross_decomposition import CCA
import numpy as np
from scipy import stats

X = [[0.006061109337620652, 0.0392466675239141, -0.04312459861840733], [-0.6652995467596429, 0.2076410843346226, -0.7817536882379651], [-1.4060868112838942, -0.055029478343267685, -1.006415484608637], [-2.170613455952169, -0.15770102997315535, -1.5223958036356375], [-2.895702070412092, -0.20498481413822175, -1.8232022285963847], [-3.687452614812402, -0.543003880524402, -2.2952030829468533], [-4.206168972149556, -0.3365693935548624, -2.841946351795423], [-5.231288268781064, -0.8024321344988571, -3.40532581256557], [-6.095805742721522, -0.9381144689340173, -3.593752186094848], [-6.297988264542059, -0.7231985020991631, -3.9435579269998406], [-7.10897027952524, -0.8639925998765747, -4.264992629284153], [-8.116238092376772, -1.0123970020855437, -4.96858178622968], [-8.969468878952105, -1.0235782019578692, -5.617282941713933], [-9.839359511108077, -1.2819621078971968, -5.8901943190245625], [-10.181936322525571, -0.9904671991812529, -6.240811384647836]]
Y = [[0.032927114749911154, 0.21320841666565743, -0.23427536580450153], [1.431742605643286, 0.23963850202268067, 0.8438745303679628], [2.908798834568648, 0.7357229001312737, 1.325345683629048], [4.438824821921929, 0.9473643810538429, 2.35038560647864], [5.887201894166226, 1.0302756424934638, 2.964806513433767], [7.409049064480012, 1.3070946380395154, 4.347473875547982], [8.51501831350366, 1.3380108570442941, 4.9533251686263275], [10.57244384646805, 2.31627294094068, 6.028949244604159], [12.22872203222364, 2.1165257564864675, 6.923464021607424], [12.664660419747504, 1.8911363532121173, 7.398432173930664], [14.29235367239137, 2.2098221962551343, 8.000538342827351], [16.327977920399373, 2.643183255720207, 9.257671785118596], [18.081288169620517, 2.968898443090926, 10.221747267811098], [19.754046559146662, 3.051682253577557, 11.244435627784393], [20.466418131910004, 2.644933083198568, 11.752014917896375]]

cca = CCA(n_components=3)
cca.fit(X, Y)
X_transformed, Y_transformed = cca.transform(X, Y)

print(X_transformed)

[[ 1.64277244  0.08237031  0.11724683]
 [ 1.41457457 -0.11600721  0.07162219]
 [ 1.18686358  0.00666119  0.08822118]
 [ 0.94070119 -0.02504267 -0.0112954 ]
 [ 0.71314666  0.02919558  0.25990473]
 [ 0.46246267  0.05607036 -0.16424275]
 [ 0.28625435 -0.09546609 -0.02850206]
 [-0.03644528 -0.03407977 -0.55790786]
 [-0.30127324  0.12266269 -0.12622283]
 [-0.37581414 -0.01941656 -0.0343278 ]
 [-0.62900674  0.05973748  0.13448604]
 [-0.95400947  0.0082079  -0.05487306]
 [-1.23214839 -0.07548718 -0.08864002]
 [-1.50031366  0.05776429  0.00665019]
 [-1.61776455 -0.0571703   0.38788062]]

print(Y_transformed)

[[ 1.64131294  0.01428169  0.11343087]
 [ 1.41330957 -0.06169376  0.06929115]
 [ 1.18580457  0.04946041  0.0853499 ]
 [ 0.9398609   0.01613582 -0.01092778]
 [ 0.71251056  0.06356946  0.25144578]
 [ 0.46205587 -0.05371303 -0.15889725]
 [ 0.28599564 -0.05298207 -0.02757442]
 [-0.03641563  0.02220818 -0.53975   ]
 [-0.30099795  0.01004611 -0.12211474]
 [-0.37547807 -0.063071   -0.03321056]
 [-0.62844374  0.02679924  0.13010901]
 [-0.95315959  0.0185694  -0.05308714]
 [-1.23105629  0.03726576 -0.08575511]
 [-1.49897395  0.01483407  0.00643375]
 [-1.61632484 -0.04171028  0.37525653]]

X_transfomed और Y_transformed के तीसरे कॉलम के बीच सहसंबंध लगभग 1 है, जबकि दूसरे कॉलम के बीच का संबंध केवल 0.389 है। जब मैं n_components=2 के साथ CCA चलाता हूं तो मुझे पहला और दूसरा कॉलम मिलता है, जबकि मुझे पहला और तीसरा कॉलम मिलना चाहिए था।

धन्यवाद!

0
user1767774 20 जून 2019, 14:22

1 उत्तर

सबसे बढ़िया उत्तर

ऐसा इसलिए है क्योंकि आपका डेटा रैखिक रूप से सहसंबद्ध है, इसलिए आप एक पतित घटक का निरीक्षण करते हैं। दूसरे शब्दों में, आपके पास वाई में एक कॉलम है जो एक्स में एक कॉलम के बराबर है, यह बुरी तरह से वातानुकूलित कॉन्वर्सिस मैट्रिस देगा जो सीसीए एल्गोरिदम उलटा करने की कोशिश कर रहा है ...

मुझे लगता है कि वास्तविक दुनिया की समस्याओं में, शोर जोड़ने से वास्तव में ऐसी समरूपता टूट जाती है। आपके उदाहरण में, आप किसी एक डेटासेट के गैर-रैखिक मानचित्रण के साथ समरूपता को तोड़ सकते हैं, उदा। Y का वर्ग करके:

cca.fit(X, np.asarray(Y)**2)
X_transformed, Y_transformed = cca.transform(X, np.asarray(Y)**2)

अब हम देख सकते हैं कि सीसीए प्रत्येक जोड़ी के बीच घटते सहसंबंध गुणांक के साथ सही ढंग से सीसी जोड़े ढूंढता है (मेरा उत्तर देखें यहां स्केलेर के CCA से स्कोर कैसे प्राप्त करें:

np.corrcoef(X_transformed, Y_transformed, rowvar=False).diagonal(3)

# output: array([0.98010177, 0.97194272, 0.26594686])
1
H. Rev. 13 अगस्त 2019, 18:58